
Dealing with Missing Values
In The Data Warehouse

DEALING WITH MISSING VALUES IN THE DATA WAREHOUSE

© 1998 Stonebridge Technologies, Inc. 2

Introduction
In an ideal world, every dimension key in each fact table record would point to a meaningful record in its respective
dimension table. In addition, every dimension attribute of each dimension record would contain valid and
meaningful information. In our real world, however, we often cannot assume that source data will be this complete.
As a general rule, the more disparate and distinctly separate systems comprise the source for the warehouse, the
more likely we will encounter issues with incomplete source data. Even when the warehouse is fed by a single
centralized OLTP system, it is quite common to find that either or both of these two missing value problems must be
reckoned with because missing values will undoubtedly affect the quality and usefulness of the warehouse.

To ignore the problem of missing dimension key values is to risk correct reporting and the confidence of data
warehouse users. For example, the default behavior of some data transformation tools is to quietly skip over fact
records with any missing dimension key values. Think about what that means in terms of data completeness. If a
sales fact record does not contain a value for the salesperson dimension key, that sale record would simply not be
loaded into the data warehouse. Do you really want your data warehouse users to see deflated sales measures just
because sometimes the OLTP does not capture what sales person made a sale? If you ignore the possibility of
missing dimension key values your data warehouse load process could be responsible for incorrect reports and
measurements used for analysis.

To ignore the problem of missing dimension attribute values is to fail to add value to otherwise low quality data.
This is particularly true in ROLAP systems, where missing values may appear as blank row headers on reports.
Users will be less likely to get confused if meaningful descriptive labels show up when missing values are present in
the data. For example, a “sales by customer income level” query might yield five different income levels with the
amount of sales to customers in each level. What about the sixth category, sales to customers for which income
level is not available or known? A user who sees this category appear on the report as “UNKNOWN” will clearly
understand why these sales do not show up in any of the known categories. They will also be less likely to suspect
that some type of reporting fluke has occurred than if the sales to this category showed up with a blank (i.e. NULL)
label. Using default values for dimension attributes when loading the data warehouse can be implemented with
varying degrees of sophistication depending on your user’s needs.

The first option for problem resolution should be to simply fix whatever is responsible for the incomplete source
data, whether it be an extraction process problem or an unenforced business rule which fails to require users of the
source OLTP system to enter certain values. For both the data warehouse team and the data warehouse users,
eliminating the cause of the problem is always the ideal solution. Back in the real world, however, experience has
revealed that when incomplete source data problems exist it is most often due to lack of business rules that would
otherwise guarantee source values to be present. Unfortunately, missing or unenforced business rules in OLTP
systems are typically one of the most difficult problems to correct. Examples of typical reasons for this difficulty
are: technically inflexible mainframe legacy systems, practical issues where requiring entry of certain values would
cause an operationally excessive burden on end users of the OLTP system, and unwillingness of OLTP end users to
begin providing correct values for data fields.

Missing data value issues often must be dealt with even when your present OLTP system does not seem to contain
fields with missing values. In many cases, a warehouse will be initialized with historical source data from backup
tapes just before going into production. This old data will not contain fields added to the database structure after it
was backed up to tape. In addition, at the time the data was backed up, certain fields may have been optional in the
OLTP system which are now required. These are examples of how old OLTP data can have missing values even
when the current system does not allow it. It is usually a practical impossibility to manually sift through all of this
historical data to fill in the missing values.

Because of these issues associated missing values, it is important to have a useful philosophy and corresponding set
of data warehouse loading techniques that specifically address the problem of missing values. Because the ideal
solution of fixing the source data is often unobtainable, at least in the short term, this article delivers techniques and
guidelines for dealing with missing values from the data warehouse loading perspective.

DEALING WITH MISSING VALUES IN THE DATA WAREHOUSE

© 1998 Stonebridge Technologies, Inc. 3

Missing Dimension Attribute Values

The difference between default, dummy, and missing values in the source data
Before tackling what to do about missing values, we must make sure we understand what they are and what they are
not. There are several different types of data problems which seem to fall into this general category of poor data
quality. These include default values, dummy values, and missing values. The first two are similar to each other,
but are different than missing values.

Default values in the source system are values automatically provided for a user when they do not provide them.
Loading procedures are not generally going to be aware of default values placed in the source data by OLTP
applications. For example, the “New Customer” data entry screen on an OLTP system for a shipping company may
simply default the customer type to “Commercial” since most customers will fall into that category. Of course the
problem with default values is that sometimes the user does not bother to provide the correct value when the default
one is not correct. For many data warehouses there is little or nothing the loading process can do to detect when
default values were the correct values. So when a value exists, whether it happens to be a default one or not, the
warehouse will simply load in the data as if all is well. In short, the problem of default OLTP values showing up in
the data warehouse is not really a problem as long as the default values are correct frequently enough that data
quality is not affected. If the default values are often incorrect you have a potentially significant data quality issue
and will have to either devise a way to infer the correct value or, as already mentioned, go for the ideal solution and
correct it in the OLTP system. Of course if you choose to devise a way to infer the correct value during the loading
process the result must be a value that is believed to be more correct than what is stored in the OLTP system.

A dummy value is a value which is sometimes used instead of a missing value in the source system. For example,
you’d never find a general ledger application that would allow a user to set up an account that didn’t have an
account type. But nonetheless users always find a way around software restrictions, so low and behold we see the
“Miscellaneous” account type in the source data. The more often dummy values are used, the more it affects the
quality of the data in the warehouse. Dimensional attribute fields containing dummy values pose essentially the
same set of problems and potential solutions as described above for default values.

It should be apparent by now that default and dummy value problems in the warehouse do not leave a lot of options
for solutions. This article focuses on handling one of the most common source data problems for data warehouses:
missing values. This is the case where there is simply no value provided at all. Technically, the loading process
either sees a NULL/empty value or one which only contains space characters. This situation is the easiest to detect
from a technical standpoint because loading procedures can simply check for the absence of a value. What can be
done when such missing values are detected during the load process is the focus of this paper.

What to do about missing dimension attribute values
What to do when missing dimension attribute values appear in the source data depends on several factors such as the
relative importance of the attribute, the feasibility of correcting the source of the problem, and the feasibility of
inferring the value while loading the warehouse.

Fix source data for controllable dimensions
Let’s take a look at two common and important dimensions in many warehouses: product and customer. Although
perhaps rare, the data administrator knows there will be product records which have no value for the product_type
attribute in the product dimension. From a data administrative standpoint, the business should be in complete
control of how it categorizes it’s products, so it stands to reason that any products that are missing important
attribute values like product type should be correctable (hence the term “controllable” dimension). Of course this
means correcting the data before it gets to the warehouse. In this scenario you should strive to correct the source of
the problem since it is both a very important attribute and is well within the control of the business.

DEALING WITH MISSING VALUES IN THE DATA WAREHOUSE

© 1998 Stonebridge Technologies, Inc. 4

Try creative inference for less controllable dimensions
For some attributes you may be able to devise a creative way to infer the value of an attribute when it is missing.
During the loading of your customer dimension, you may encounter a new customer record which has no value for
the customer_type attribute. When there is a new customer, it often coincides with initial purchases by that new
customer. Your loading process could search the appropriate new fact records (i.e. sales) associated with this
customer to find out what type of product they spent the most on. This, in turn, could be used to come up with a
best guess for the most appropriate value of the customer_type attribute.

On the other hand, if it is known that there will be customer records which have no value for the income_level
attribute in the customer dimension, there may be no real means for correcting the source of the problem. After all,
some customers will simply refuse to reveal such information. What to do?

When all else fails, use a dummy value
When all other means for obtaining a meaningful value have failed, the warehouse loading process should use it’s
own dummy value. The most simplistic version of this involves converting all missing attribute values to a special
value like the word UNKNOWN or UNAVAILABLE. This is far better than leaving the value NULL or full of
space characters because it will be readily apparent to users that certain data is not known and the keepers of the
warehouse know that it is unknown. This also helps ensure that when the attribute is used in a report as a row header
or grouping (e.g. “sales by income level”), all of the sales to customers with unknown income levels end up in the
UNKNOWN bucket. Technically, this should be the loading behavior even if some source customer records
contain NULL and some contained space characters for the income_level attribute.

When one dummy isn’t enough
For some warehouse designs, however, a more refined approach is needed. Let’s assume that some of your
customers are individual people and other customers are actual businesses. You customer dimension contains a
customer_type attribute which indicates “Individual” or “Business”. In this scenario you would likely have a
customer dimension design where some attributes are specific to individuals, some are specific to businesses, but
most apply to either type of customer. For example, the income_level attribute might only have meaning for
individuals, while the franchise_yn attribute (designating whether or not the customer belongs to a franchise) would
only have meaning for businesses. Attributes such as customer name, country, and state apply to both types of
customers. What’s the problem with converting a missing income_level field with the value UNKNOWN or
UNAVAILABLE? For customers who are individuals this conversion seems appropriate, but what about customers
who are businesses? Suppose a data warehouse user query asks for 1998 1st quarter sales by income_level for the
state of Georgia. If the loading process has been replacing all missing income_level values with the value
UNKNOWN for both individual and business customer types, the sales displayed in the UNKNOWN category may
appear unusually large to a user. For one thing, this could mislead a user to believe or suspect that the quality of the
income_level data is worse than it really is. As an example, if as much as 30% of the sales fall into this
UNKNOWN category, it may be simply because 20% of the sales were to businesses (where the income_level is
always missing) and the other 10% were to individuals which have no known value for income_level. It’s bad
enough to have to live with certain data quality issues in your warehouse, but if users believe the problem is worse
than it really is then you may have a far worse problem: lack of sufficient utilization of the warehouse.

An equally important problem is somewhat the opposite of the former one: when the user accepts the data quality
problem but fails to apply appropriate filters to get the most accurate data possible. The user simply accepts the fact
that some individual customers will show up in the UNKNOWN income level category, but this acceptance
combined with the blanket use of UNKNOWN for missing values in the loading process can actually mask
problems with user’s queries.

Borrowing from the previous example, if the user of the warehouse works for a company where only a small portion
of sales come from businesses (say 4%), it will be easy to forget to exclude them when issuing queries which are
intended to focus on the main customer base (i.e. the individuals). Using the same example query, 1998 1st quarter
sales by income_level for the state of Georgia, suppose once again that the data warehouse loading process replaces

DEALING WITH MISSING VALUES IN THE DATA WAREHOUSE

© 1998 Stonebridge Technologies, Inc. 5

all missing income_level values with UNKNOWN, regardless of customer type. What if this query returned 7% of
the sales in the UNKNOWN category? Notice that the user has not bothered to limit the results to customers with a
customer_type of individual. Even if this particular user has a general idea of what the total 1998 1st quarter sales
to “individual” customers in Georgia is supposed to be, they will not likely realize their mistake from the ever so
slightly elevated total displayed by the query tool. Unless the user just luckily remembers to go back and filter out
the business customers, they will not realize that some of the 7% in the UNKNOWN income level category are
really there because those are business type customers which ought to be excluded in the first place.

So we see that if a user is comfortable with or at least not overly concerned with the amount of sales that end up in
the UNKNOWN income level, this could actually allow users to unknowingly fail to apply a filter to their query
which excludes the business customers. In this scenario, the user may believe they are looking at a total which
reflects sales only for individual customers, when in fact some of the sales in the UNKNOWN income level
category are business customers.

Use smart dummies for a more refined approach
We have seen just two examples of the basic shortcomings associated with using the same dummy replacement
value for missing dimension attribute values regardless of context. There are likely many ways in which this type of
problem can occur. However, it should be clear by now that to solve this set of problems, different dummy values
should be used depending on the context. In our customer dimension example, since the income_level attribute only
applies to customers with a customer type of individual, the data warehouse loading process should only replace
missing income_level values with the dummy value UNKNOWN when the customer_type = ‘individual’. For
business customers, the dummy value to use should be something simple like NOT APPLICABLE, or perhaps
even more useful is a value such as BUSINESS CUSTOMER. For the users, using these “smart dummy” values
helps draw the distinction between something that is not known and something that does not apply. As you might
imagine, this extra level of customization can go a long way toward lessening the impact of poor data quality by
making users more aware and informed through a slightly enhanced cleansing technique.

Missing Dimension Key Values
While loading a fact table, we generally expect each dimension key in each fact record to point to an existing record
in it’s associated dimension table. These dimension keys (or associated artificial dimension keys) are the foreign
keys into their respective dimension tables. So far this description sounds just like foreign keys in an ER model and
we’re all comfortable with the way that works, right? In an OLTP system with an ER model, if a record needs to get
inserted but there is a foreign key violation (i.e. no associated record in the parent table of the relationship) there is
no mercy and the record is immediately denied insertion. This is both acceptable and desirable in the OLTP system
because typically there is a user interacting with the system at the moment the record insertion is requested (e.g.
adding a new customer or creating a new order). If there is something missing from the user’s input and the foreign
key constraint is being enforced (whether through the application, the database, or both), the user is there to fill in
the missing information and must do so before being allowed to proceed. It is a great natural characteristic of OLTP
systems that the data can be forced to be correct (or complete) before it is actually stored.

But let’s consider storing data in the warehouse. Should the data warehouse be as strict as the OLTP systems that
feed it when loading the fact table? I said that OLTP systems can (and usually do) force the user to provide
complete information, but what about the cases where the source system does not or cannot strictly enforce even
some of the more basic business rules that translate into foreign keys in the ER model? If it’s a matter of does not,
of course you should strive to remedy the OLTP system to enforce the foreign keys. On the other hand, there are
cases where the source system cannot enforce foreign keys either by nature of their business or when it is simply a
practical impossibility to do so.

Facing reality
In the retail industry, for example, retailers often do not know who their customers are. They ring up your items,
you pay cash, and they know end up knowing little to nothing about you. The best they can do is to make some very

DEALING WITH MISSING VALUES IN THE DATA WAREHOUSE

© 1998 Stonebridge Technologies, Inc. 6

basic inferences about the type of customer that you are analyzing by the particular items you purchased. As you
might imagine, then, a customer dimension for a warehouse containing retails sales will be fairly sparse. It will only
contain customers that can actually be identified, such as those possessing merchant credit with the retailer or those
who used a non-merchant credit card and their demographic data is obtained from a third party. Some retailers will
ask for your phone number when making a cash purchase so that they may determine who you are and your
demographics (i.e. your customer dimension attributes) from a third party source. Even those retailers cannot
always find out who you are because not all of us are willing to give out our phone number. It is clear, then, that the
OLTP system will not know whom the customer is for every single sale.

Your dimension needs a dummy
If the OLTP system does not always know who the customer is for every sale, then how is the data warehouse
supposed to know what dimension key to assign when loading the sales fact table? Your data warehouse loading
process must point such sale records to something in the customer dimension or there will be show-stopping issues
for users of the warehouse. After all, if you just use a null value for the customer dimension key when such a sale
record is inserted into the sales fact table then any query involving both the fact table and the customer dimension is
subject to returning deflated results. That’s because SQL will not join rows containing NULL values in the join
columns. Once again, we must use our own dummy value so that the dimension key in the fact table points to a
record in the customer dimension. Of course this dummy dimension key value must point to a dummy customer
record which actually exists in the customer dimension.

The most simplistic implementation of this dummy record is perhaps the most common one. Simply assign the now
infamous value of UNKNOWN to each attribute in this customer dimension record. If your company does know
who the vast majority of their customers are, then this simple method should suffice because anything more
sophisticated is probably not worth the effort required. In other words, if only 3% of your sales are associated with
unknown customers then how much better off would your users really be if they did know their demographics?

What about dummy values for date and numeric data types?
Of course assigning labels like UNKNOWN and NOT APPLICABLE only work for columns with a character data
type. What about dates and numbers? You can only put valid dates, valid numbers, and NULLs in those columns,
so text is not allowed. Using special descriptive values for character columns is acceptable because we can make it
very clear that the value is indeed a special value since the text is very readable and self explanatory (e.g.
UNKNOWN, NOT APPLICABLE, etc).

However, this is not the case with dates and numbers because unless we use NULL, someone may knowingly or
(more likely) unknowingly include unwanted dimension records when constraining on one of these columns. For
example, if our sales rep dimension contains commission_rate as a numeric percent value and we use –999 as our
special value to designate UNKNOWN, a query with a constraint on it such as commission_rate < .05 (e.g.
commission rate less than 5%) will include sales rep dimension records which have –999 as the commission_rate
value. Keep in mind that –999 would be used for sales reps for which we really don’t know the commission rate, as
opposed to assuming that it’s zero when not given. The user probably does not wish for the above query to include
such dimension records, but they may not even realize that they were included unless the query specifically
displayed the commission rate value itself. The same kind of problem can occur with special dummy date values. If
Dec. 31, 2500 is used as the dummy date value, someone looking at regional orders placed since Feb. 18, 1998 will
see inflated order amounts because the query will include all orders for which the order date was not known because
the order date Dec. 31, 2500 is greater than Feb. 18, 1998.

To avoid the pitfalls associated with using dummy values for date and numeric columns, it is best to leave them
NULL when they are not known and cannot be estimated or derived. The tradeoff for avoiding these pitfalls is
forcing your users to deal with empty cells and potentially empty row headers in their reports. The good news is
that we are probably only talking about a small portion of the overall number of dimension attributes since most are
the character type and in most designs there will not be a tremendous number of date and numeric columns in the
dimensions anyway.

DEALING WITH MISSING VALUES IN THE DATA WAREHOUSE

© 1998 Stonebridge Technologies, Inc. 7

Some designs contain many columns of the numeric data type, but the most common explanation for this is the
“code” fields (e.g. customer_type_code, product_type_code, etc). These are the codes associated with the
descriptive fields (e.g. customer_type, product_type, etc). If the design requires the dimensions to capture both the
codes and descriptions, there is no need to store the codes as numeric data types, even though they may be stored
that way on the source system. The codes do not represent any quantitative value, so there is no benefit to storing
them in the data warehouse as a numeric field. No one is going to sum up a code field in a query. Also, it is highly
unlikely that anyone will need to apply a range constraint on a code field (e.g. product_type_code >= ‘12’). If you
believe someone would need to apply a range constraint on such a code, you probably need to introduce a new
attribute in the dimension that allows users to clearly and directly ask for what they want (e.g. add a product_group
attribute which contains values such as “Group A” for product_type_code 1 through 5, “Group B” for
product_type_code 6 through 11, “Group C” for product_type_code 12 and up, etc).

Why not simply reject
When your fact record source contains a record with a missing dimension key, many developers and architects will
insist that “This record is junk and therefore it does not belong in the warehouse!” When this rationale is used to
justify rejecting any such fact records from entering the warehouse, there is a significant risk. Specifically, if your
loading process rejects some records because all of the dimension keys were not present, you may end up with a
partially loaded warehouse from the user’s perspective. For example, if one of our dimensions is SALES REP, but
the OLTP system doesn’t always capture who the sales representative is for every single sale, you will certainly not
want to reject any sales from the warehouse just because the OLTP system did not know who made the sale. A sale
is a sale is a sale, whether you know every last bit of information about it or not. If you reject a sale because you
didn’t know who sold it, the user of the warehouse will not be able to get correct totals at any level of
summarization. If you accept a sale with an UNKNOWN sales rep, that sale can still be included in query results.
When using a technique that accepts such sales records, the worst type of thing that can happen in terms of querying
is that a “sales by sales rep” query will contain an amount that is not associated with any real sales person. At least
the sales totals are correct, which is more than can be said for a warehouse that rejects some fact records.

In a nutshell, then, the message here is that we should think of loading the fact table as an all or nothing activity.
Either accept all fact records or do not accept any at all. This is a general philosophy, however, for which
exceptions can be legitimately made. For example, if sales transactions with zero dollar amounts appear in the
source data and the data warehouse users contend that those fact records should not ever be included in the fact
table, then perhaps you should specifically check for that condition before inserting into the fact table and decide
whether to reject it or not. The other option would be to change the source extraction process so that it is
responsible for deciding whether the transaction should be in the warehouse or not. By default, then, you should
strive to load all fact records and only selectively reject for specific reasons that are driven by business goals.
Blindly rejecting any fact record that is missing any dimension key values should not be a technical design
assumption of your data warehouse loading processes.

The underlying principal: load all or load none
In justifying the acceptance of source fact records with missing dimension keys, my goal is to make the point that
we generally should not use the same degree of strictness when loading the warehouse as when inserting and
updating OLTP systems. Realize that I am intentionally ignoring the usual data cleansing associated with data
integration (i.e. standardizing attribute values and dimension keys among disparate systems and multiple functional
business areas). I am ignoring those issues because they are outside of the scope of this paper. What is being
addressed here are the hiccups and anomalies in the OLTP data which must be tolerated when loading the data
warehouse.

For example, suppose your sales warehouse is at the most granular level of detail possible and it is fed by the
invoicing system that bills your customers. If your IS staff and users are certain that every single line item on every
invoice should be associated with a certain sales representative, then you might consider it a serious problem if the
sales rep dimension key is missing from a source fact record and abort the data warehouse load altogether with

DEALING WITH MISSING VALUES IN THE DATA WAREHOUSE

© 1998 Stonebridge Technologies, Inc. 8

appropriate error logging. On the other hand, if the source of your data ultimately comes from cash registers and
you often (or even just sometimes) do not know who the customer was in the sale, then you should just accept those
records with a missing customer dimension key by pointing them to the UNKNOWN record in the customer
dimension. If you don’t know who the customer is, you don’t know who the customer is and no amount of clever
cleansing and transforming is going to help you figure out who it was. If someone needs to be warned when you
load a record with a missing source dimension key then just make sure that your loading process logs it in some way
(e.g. appending to a log file or inserting a warning record into an error table).

When deciding what to tolerate and what not to tolerate during the load process, the line has to be drawn
somewhere. So how do we make this decision? By default, you should assume that missing dimension keys and
dimension attribute values will be technically acceptable and handled via the techniques described. If specific
exceptions to this assumption need to be made for a specific fact table or dimension, then so be it. Try to make it the
exception rather than the rule, however, because one of the most important data warehouse goals is to guarantee that
users are working with a complete set of data and the fundamental means for achieving that is by loading all of the
relevant data extracted from the source systems.

About the Author
John Hess is a Senior Data Warehouse Architect with StonebridgeTechnologies. He has served as the lead architect
on several DW projects over the past 3 years, and enjoys mentoring other DW consultants within the organization.
Prior to Stonebridge, John served in key roles as a UNIX developer, Oracle DBA, Informix DBA, and data modeler
at a revenue management consulting firm for two years. John holds a bachelor’s of science degree in computer
engineering from Auburn University. John may be contacted at jhess@tacticsus.com.

DEALING WITH MISSING VALUES IN THE DATA WAREHOUSE

© 1998 Stonebridge Technologies, Inc. 9

-

For more information, please contact:

Stonebridge Technologies, Inc.
14800 Landmark Blvd.

Suite 250
Dallas, Texas 75240-7581

972.404.9755
800.776.9755

972.404.9754 Fax
www.sbti.com

	Introduction
	Missing Dimension Attribute Values
	The difference between default, dummy, and missing values in the source data
	What to do about missing dimension attribute values
	Fix source data for controllable dimensions
	Try creative inference for less controllable dimensions
	When all else fails, use a dummy value
	When one dummy isn’t enough
	Use smart dummies for a more refined approach

	Missing Dimension Key Values
	
	Facing reality
	Your dimension needs a dummy
	What about dummy values for date and numeric data types?

	Why not simply reject
	The underlying principal: load all or load none
	About the Author
	
	
	
	
	
	Dallas, Texas 75240-7581

